本篇文章主要给网友们分享区块链网络安全技巧论文的知识,其中更加会对区块链技术的安全问题进行更多的解释,如果能碰巧解决你现在面临的问题,记得关注本站!
区块链技术如何成为网络安全的关键因素
许多领先的网络安全公司使用区块链技术来防止数据篡改。此外,美国医疗保健公司正在开始探索这项技术。储存电子健康记录有一些缺点,但从现在起,分散的数据库有希望通过建立一个创新的保健结构来彻底将这些文件变革。区块链也许是通过扩展使用网络来解决我们所面临的问题的一种方法,并且最终会有更安全的网络通信。
区块链的内部
加密货币是一种数字货币,它使用加密技术进行安全的交易,任何类型的加密货币都可以使用区块链。
区块链技术现在是一种分散的、公共的分类账技术,之所以被称为区块链技术,是因为它允许数字货币在不依赖中央机构的情况下维护可信的交易网络过程。
这种结构确保系统不受政府干预和操纵,市场参与者可以跟踪虚拟货币交易,而不需要中央记录。每笔交易都按时间顺序记录并添加到区块链中。每个参与这个过程的主机都会得到一个副本。
每笔交易都按时间顺序记录并添加到块链中。参与这个过程的每个主机都会得到一个块链的副本。这一概念包括一种独特的方法来验证交易,在数字货币范围内,它还具有数字化、编码和存储任何类型的文件的能力,这对网络安全非常重要。
医疗保健公司及其创新策略
区块链是一种安全的架构,可以用它构建一个健康保健系统,以及正确的结构和参数。在这个系统中,病人将有准确和最新的记录,这些记录可以防止被篡改或监视。这些数据可以方便快捷地与任何需要它的提供者共享。
电子健康记录(EHR)是存储病人病史的一组数据。这些记录包括与每个人的治疗相关的所有关键的行政临床数据。这些可能是各种各样的参数,如进度图、潜在问题、药物、免疫、过去的病史和实验室数据。
EHR提供了信息的自动访问,从而简化了临床医生的工作流程。它也有能力通过各种接口,包括基于证据的决策支助、质量管理和成果报告,直接或间接地支持与护理有关的其他活动。
EHR的主要缺点是,这些记录没有与当前信息保持同步,而且数据不容易在提供者之间共享。另一个限制是在潜在的网络危险的情况下,数据存储不安全。对于这些缺点,区块链似乎是一个更智能的结构。
以波士顿市为例。那有26个不同的电子病历系统,每个系统都有自己的语言来表示和共享数据。这种情况下的信息在需要的时候是无法获得的,这就造成了金钱上的损失,有时甚至是人命的损失。而且,黑客有机会窃取、删除或修改记录,在紧急情况下,医生可能无法获得关键的医疗信息。这种混乱会对患者造成直接伤害。
区块链结构可以保证多年的病人数据安全,并且可以使数据录入中的任何人为错误更容易追踪和更正。在这里,患者自己可以检查和更新信息,甚至在他们收集和观察的时候进行新的记录。黑客和欺诈都将极不容易发生。
区块链能力综述
区块链还可以在安全方面帮助其他网络通信领域。
Acronis基金会的主席JohnZanni说,“我们相信区块链技术在未来几年将在科技和IT领域产生变革,就像互联网在九十年代和本世纪初为世界所做的那样。几年前,我们开始与以太坊区块链合作,研究如何更好地保护数据。今天,我们的存储和备份软件的一部分允许用户对任何数字数据进行公证,并将指纹保存在区块链上,以确保它不会被篡改。”
随着现实世界与数字世界的相互碰撞,数据已成为许多企业的关键角色。但是,确保这些数据保持安全、可靠、保密和可信已成为一项持续的挑战。
此外,就网络安全而言,当今行业面临的最大问题之一是数据篡改,即数据可能以授权的方式被意外或故意地篡改。
专家需要关注区块链,并计划如何将这一技术应用到众多潜在的应用中,为我们的未来铺平道路。
作者:冉伟
(本文节选自《2021全球区块链应用市场报告》)
当区块链网络安全技巧论文我们谈论区块链区块链网络安全技巧论文的时候,但凡对区块链有所了解的人都能够就相关主题或多或少地表达出自己的一些见解。例如:从技术体系上看,区块链是分布式数据存储、点对点传输、共识机制、加密算法等计算机技术的新型应用;从功能属性上看,区块链具有去中心化、不可篡改、全程留痕、可以追溯、集体维护、公开透明等特征。
回顾区块链的 历史 ,就绕不过比特币。2009年1月3日,序号为0的比特币创世区块诞生。几天后,也就是2009年1月9日,序号为1的比特币区块诞生。当两个区块连接起来时,区块链就此“横空出世”。
化名为“中本聪”的比特币发明者可能自己都很难想象:在过去12年间,以比特币为中心,一个庞大的“加密货币家族”已经在全球金融市场掀起一场持续至今的“巨浪”。其间,与加密货币相关的创新与风险交织,进步与泡沫同在,追捧与批判共存,并推动着各国政府部门不断完善货币与金融体系、 社会 治理与监管体系。
与此同时,与比特币相伴相生的区块链同样在快速进化,而且早已超越“比特币的底层技术”范畴,应用到了 社会 与经济发展的各个角落。
那么,区块链到底通过什么样的机制发挥作用,相比传统技术和模式到底有哪些优势,其应用效果到底如何?在资本实验室与远望智库联合发布的《2021全球区块链应用市场报告》中,我们通过对2020全年和2021年一季度全球1550余个应用案例的研究,试图为上述问题提供具有一定实证性的答案。同时,基于这些案例的研究,我们可以建立起对区块链的重新认识:区块链即信任、区块链即共享、区块链即交易、区块链即替代、区块链即效率。
在比特币创世论文《比特币:一种点对点电子货币系统》中,“中本聪”反复强调了比特币具有不依赖于“可信任第三方”的特性,也就是“去中心化”的特性。
反过来看,比特币的底层技术——区块链恰好正是为“信任”而生。换句话来说,重塑数字化时代的“信任”是区块链最基础的功能,只不过这种信任由人与人之间、法人主体之间的信任转换成了机器与机器之间、区块与区块之间、节点与节点之间的信任。有趣的是,后续诞生的“智能合约”功能通过与区块链的融合又进一步强化了这种信任。
身份编码与认证是实现上述信任机制的第一步,分布式身份识别(Decentralized Identity, DID)系统是其中的核心。有了DID应用,从个人到组织,再到物联网设备,从实体物品到虚拟产品,都能够被赋予数字“身份”,并实现可信交互。也正因为此,基于区块链的存证、赋权、验证、流通、交易才得以实现,也才有了区块链在各行业的落地实施。
来自全球的应用案例显示,新的信任机制为 社会 与经济运行提供了新的规则和动力:
l 中国正在全面推进区块链电子证照的应用,企业与居民得以享受更高效、便捷的政务服务;
l “一鱼一码”、“一果一码”、“一茶一码”等应用正在推动全球农产品防伪溯源与食品安全体系的升级;
l 通过区块链与大数据、人工智能的结合,企业的信用“画像”更为精准,并能够据此获得更快捷、成本更低的融资服务;
l 公益机构纷纷将爱心善款“上链”,以形成更透明、更规范的公益跟踪与管理系统;
l 中国相关城市启动基于区块链的气瓶产品追溯管理系统,气瓶档案信息源头可信度与气瓶安全管理水平大幅提升;
l 德国正在为其分布式能源资产建立基于身份认证的数字注册系统,以推动可再生能源开发与交易,并应对数字化能源时代的到来……。
在区块链的三种类型(公有链、联盟链、私有链)中,联盟链得到了最广泛的应用。除了对技术性能、运行效率、可操作性、预期成果等方面的考量,这主要是因为联盟各方已经具备一定的信任基础。这也从另外一个角度表明:在超越比特币等加密货币的区块链应用中,“多中心化”,而非完全的“去中心化”是更为现实的一种选择。
此外,不可否认的是:不同于比特币“挖矿”所依托的工作量证明机制,区块链在实际应用过程中并不能从源头上完全确保上链数据的真实性。也就是说,某个联盟成员或节点可能会有意无意地提供虚假数据。不过,借助区块链不可篡改、可追溯、多方共识等特性,联盟可对造假行为进行识别,并作出相应的惩罚,例如将造假成员“踢出”节点。因此,在某种意义上,基于区块链的信任在很大程度上是建立起联盟成员对数据真实性的敬畏,以及对数据造假行为的震慑。
如果说“信任”是区块链应用的基础,数据共享就是区块链应用的核心。没有数据共享,就产生不了合作,区块链的落地应用便无从谈起。
l 国家外汇管理局“跨境金融区块链服务平台”试点已全面铺开,通过外汇局、税务、银行及企业相关市场主体之间的信息交换推动了外贸出口业务的发展;
l 台湾11家保险公司联合建立的“保全/理赔联盟链”投入运营,各公司在该平台实现了“单一申请、文件共通”;
l Contour、TradeLens等区块链平台通过企业、金融机构、航运公司、码头、海关等机构间的数据协同,正在重塑全球供应链,并为国际贸易的数字化变革提供动力……。
l 在中国,政府各部门间通过数据协同,实现了“一数一源、一源多用、一网通办、全程网办”;
l 通过“司法链”平台,各类电子证据得以与公证、仲裁、司法鉴定、法院等司法机构无缝对接,在提高司法体系效率的同时降低了成本;
l 面向全国基层法院的“审判辅助性事务跨域协作机制”可实现不同地域法院之间的“跨域送达、跨域取证”,有效提升了审判辅助性事务效率和审判质效,降低了司法运行成本……。
l 中国“粤港澳大湾区组合港”项目正式启动,可支持大湾区五大直属海关辖区之间贸易各方的互联、互通,成为大湾区首个贯通港口、海关、物流、企业、金融等贸易全流程的互联共享区块链网络;
l 日本KDDI电信、日立公司、关西电力、积水建房等大型企业组建区块链联盟NEXCHAIN,以形成跨行业的房地产信息共享与管理模式,并推动跨行业创新;
l 法国雷诺集团完成其区块链项目“XCEED”的测试,用于在零部件供应商和 汽车 制造商之间共享合规信息,并简化合规认证……。
上述金融、政务及各行业的应用案例虽然只是少数的典型案例,但也足以说明:一方面,数据共享是区块链应用的内在要求。在具体实施上,一切都要从打破“数据孤岛”与“信息不对称”开始;另一方面,区块链的应用实践又反过来推动了跨层级、跨部门、跨行业、跨区域、跨国界的数据共享和前所未有的合作。
由上述案例还可以看出,基于区块链的透明度、安全性、可信任性等特征,数据共享让原本看起来不太可能的合作得以达成,并形成更多的开放式创新成果;数据共享能够有效提升商业体系、金融体系与 社会 治理体系的运行效率;各类组织在与外部机构进行数据共享与合作的同时,促进了自身的组织变革、流程变革。
在信任与共享的基础上,“交易”是区块链应用价值最直观、最深层次的体现。目前,区块链正在开启全球各行业交易模式变革的新篇章。
从功能架构上看,基于区块链的交易绝非只是交易环节的变革,而是综合了区块链的各项独特功能,是对防伪溯源、供需对接、仓储物流、支付/结算、供应链融资、保险、网络安全等区块链应用的一体化整合。
从应用形态上看,基于区块链的交易超越了产品或服务交易的传统概念,代表了更广泛的数据在流通中的价值实现。
从应用场景来看,基于区块链的交易涉及实体产业的升级、金融行业的数字化进阶,以及“通证经济”的创新应用。
在实体产业,以农业区块链的应用为例:一方面,基于区块链的供应链溯源已经成为食品安全的重要屏障;但另一方面,对于种植者或养殖者来说,供应链溯源功能还远远不够。如何帮助他们扩大农产品销售,并尽可能获得更多收入,才是区块链技术持续推动农业发展的“硬道理”。在其它行业,这一点同样适用。
在上述背景下,全球实体产业的新型交易平台不断涌现:
l 印度政府使用区块链平台帮助偏远地区的农民销售农产品,以在减少中间费用的同时,获得更高收入;
l 瑞士公司Cerealia搭建基于区块链的农产品贸易和融资平台,以推动全球新兴市场国家的农产品出口;
l 全球最大的独立精制糖生产商、阿联酋Al Khaleej糖业公司推出基于区块链的糖产品交易平台DigitalSugar.io,实现基于现货的国际原糖交易;
l 江西赣州上线基于区块链的国际木材电子交易平台,对木材交易进行全流程上链管理,并将为木材市场提供监管云仓、物流、金融、保险等全产业链服务;
l 山东省启动山东互联网中药材交易平台,将通过区块链等技术实现质控、交易、支付、结算和监管的线上一体化服务;
l 苏州相城区渭塘镇发布基于区块链的珍珠在线交易平台,对珍珠核心参数及检测报告上链存证,还将增加供应链管理、贸易金融、智能合约、支付结算、激励机制等功能;
l 霍尼韦尔公司推出飞机零部件新件与二手件在线交易平台GoDirect Trade,为大型制造商如何将区块链应用于零部件交易与流通提供了有价值的参考……。
在金融行业,区块链正在从证券交易、资产证券化、贸易融资、跨境结算等方面推动金融交易业务的数字化进阶:
l 澳大利亚国家证券交易所推出基于分布式账本技术的数字证券交易平台ClearPay,可提供当日多币种、实时DVP结算,并将替代原有的交易所结算系统;
l 瑞士公司Finka以玻利维亚有机牧场的牲畜为标的推出了相关的证券化代币投资平台,以促进当地畜牧业发展;
l 美国公司Securitize建立了基于数字证券的日本房地产投资平台,旨在盘活日本农村的闲置不动产,并提升农村经济活力;
l 中国邮储银行与建设银行完成首笔跨区块链平台福费廷交易,华夏银行昆明分行首次实现二级市场福费廷转售业务;
l 南京钢铁分别与澳大利亚力拓公司、巴西淡水河谷公司完成了基于区块链的铁矿石交易;
l 宝钢股份与澳大利亚力拓公司完成首单基于区块链的人民币跨境结算交易……。
当然,在区块链推动金融交易业务进阶的同时,与区块链、加密货币相关的炒作、骗局、洗钱、网络攻击等阴暗面如影随形。如何既能持续推动金融创新,又能进行高效的风险防控,以及对违法犯罪的有力打击,是一个需要长期应对的重要问题。从全球来看,中国在这方面已经做出态度鲜明、措施严厉,并富有成效的回应。
实体产业、金融行业借助区块链实现的交易变革只是区块链改变传统交易方式的初级阶段,“通证经济(Token Economy)”才是区块链“交易”功能的更高层级。
在“通证经济”的框架下,从电子证照到技能证明,从信用记录到公益活动参与记录,从社交媒体轨迹到碳减排行动,当各种数据成为被加密的数字权益证明,并且可流通、可交换的时候,就被赋予了“通证”功能。
撇开“非同质化通证(Non-Fungible Token, NFT)”的投资/投机热潮不论,我们已经可以看到全球为数不少的“通证经济”早期应用:
l 由奥地利政府支持的HotCity项目通过众包模式与区块链、 游戏 化代币的结合,鼓励居民提交供暖余热热点,以更高效地满足城市供热需求;
l 福特公司为采用混合动力 汽车 的商业和市政车队建立“绿色里程”,以帮助改善城市空气质量;
l 河南新乡市卫滨区在其区块链产业园项目中基于商家和企业积分体系发行通证,以建立新型商业服务平台;
l 成都市发布基于区块链的社区治理产品“链动社区”,居民可通过志愿者服务等活动获得该平台的“时间银行”积分,并兑换成社区商户提供的福利和优惠;
l 全球非营利组织“移动开放区块链计划”的电动 汽车 充电网络工作组(EVGI)启动去中心化 汽车 充电技术的全球标准系统,涵盖了通证化碳信用(TCC)场景;
l 区块链奖励平台MiL.k与韩国零售商合作,为其会员提供基于区块链的积分管理服务。会员可通过MiL.k平台将现有积分转换为本地MLK通证,也可以兑换成其他第三方积分……。
由上述案例及更多的案例可见,“通证经济”具有几个显著特征:
“通证经济”为更广泛的数据赋予了资产属性和可交易属性,并通过跨领域、跨平台的互信与流通,能够提高整个 社会 与经济系统的运行效率;
“通证经济”是一种新的价值创造和实现过程,不一定直接以货币为交易媒介,而是更多体现为各种要素、资源的互换互利与重新配置;
“通证经济”往往与激励机制结合在一起,通过对“好人好事”、“好企业”、“好机构”的激励,将有效重塑 社会 价值体系与 社会 信用体系。
总体而言,“通证经济”将催生出新的生产要素,将重塑生产关系,并极大地解放 社会 生产力;“通证经济”代表了“信息互联网”向“价值互联网”的进化,昭示着数字经济最激动人心的未来;基于区块链的“通证经济”已经初见倪端,并开始对经济运行、 社会 治理,以及每个人的生活方式带来持续可见的变革。不管是各类机构,还是个人,都应该为这场变革做好思想与行动上的准备。
与其它新技术一样,区块链在应用和普及过程中,不断产生着平台、媒介、模式、方法等方面的替代效应:实体证件被电子证件替代,信用记录被通证替代,人工审核被数据验证替代,城市管理平台被“城市大脑”替代……。
这样的替代已成常态:
l 阿根廷央行开始就新的区块链清算系统展开概念验证,该系统可能会替代现有清算系统;
l 韩国造币和安全印刷公司(KOMSCO)拓展区块链数字礼券业务,以替代纸质礼券,并在纸币和硬币发行量大幅下降的同时实现了创纪录的营收提升;
l 中国各地法院在不动产查封执行中开始采用区块链电子封条替代传统的纸质封条;
l 上海市法院系统正在通过人工智能、区块链等新技术的采用, 探索 以数字化庭审记录替代人工庭审笔录;
l 日本公司SUSMED推出“使用区块链技术的临床数据监测系统示范”试点,表明药物或医疗设备临床试验中必要的监控过程可以使用区块链系统进行替代;
l 支付宝与悟空租车合作推出“刷脸”租车服务,通过区块链技术与信用免押模式,游客只需“刷脸”即可租车,通过手机操作就能归还车辆;
l 在新冠疫情下,中国各地方政府密集推出结合区块链技术的“非见面、不接触、零跑腿”式政务服务,替代了传统的线下服务方式,为疫情期间的远程招投标、“云端”通关、金融支持、复工复产等工作的顺利进行提供了有力保障……。
此外,我们还可以看到,通过区块链技术的使用,各类企业级服务同样在实现替代与进化:从纸质合同到电子合同,再到基于程序化、可自动执行智能合约的区块链合同,区块链正在推动合同签署进入“链签约”时代;从线下的人力资源公司到线上的人力资源平台,再到基于区块链的人力资源市场,全球人力资源服务已经经历了从1.0时代到2.0时代,再到3.0时代的持续变革。
总体来看,当区块链“侵入”到各行业,便“毫不留情”地删除着一切不必要的环节和流程,一切不必要的人工操作,并加速迎接无纸化、无人化、自动化时代的到来。
在我们分析全球1550余个区块链应用案例的过程中,类似“提高”、“加快”、“缩短”、“降低”、“减少”、“节约”、“节省”等词汇频频出现在我们的眼前。这些词汇表明,效率的提升是区块链应用各方的共同追求,也是区块链替代效应的最直接成果。
众多的应用实践正在为此添砖加瓦:
l 肯尼亚公司Shamba Records为该国农民提供区块链溯源、交易与融资服务,目前已覆盖6000多小型农户,并帮助他们将收入提高了至少40%;
l NTT DATA、三菱等公司参与投资的区块链贸易平台TradeWaltz完成试运行,结果显示该平台最多能够削减传统贸易流程50%的工作量;
l 沃尔玛加拿大公司通过DL Freight区块链平台的应用,将其与承运人之间的发票纠纷显著降低了97%;
l 国网公司电力交易存证溯源查询平台投入运行,实现了注册用户的真实性审核全流程自动化,节省了99%的可信人工审核时间;
l 中远海运集运与山东港口集团青岛港合作推出区块链无纸化进口放货模式,平均每个集装箱可为客户节省提货时间近24小时;
l 浙江台州利用“物联网+区块链”回收系统解决海洋污染治理难题,相比传统处理方法,该回收系统可以节约94%的人力成本和84%的运营成本……。
综上所述,通过信任机制、共享机制与交易机制的共同作用,区块链形成了明显的替代效应,提高了金融、政务与各行业的运营效率,并将持续形成系统性的变革。这种变革重塑着人与机器、人与 社会 、人与环境的关系,并清晰地指向三个终极目标:效率、福祉与环保。
真的,娱乐城区块链技术被认为是继蒸汽机、电力、互联网之后,下一代颠覆性的核心技术。 如果说蒸汽机释放了人们的生产力,电力解决了人们基本的生活需求,互联网彻底改变了信息传递的方式,那么区块链作为构造信任的百家乐机器,将可能彻底改变整个人类社会价值传递的方式。那么首先,我们要明白一个概念,所谓的区块链,便是分布式数据存储、点对点传输、共识机制、加密算法等计算机技术的新型应用模式。所谓共识机制是区块链系统中实现不同节点之间建立信任、获取权益的数学算法。
移动安全业内人士分析称,微信采取SSL加密技术,就确保了传输过程中的加密,即便遭到黑客攻击,也难窃取用户信息。多名互联网黑产从业者称,只有盗取目标的微信或QQ账号,才能够查看其聊天记录。包括微信、LINE、Telegram、WhatsApp等在内的国际主流聊天软件中,LINE和WhatsApp均默认端到端加密,Telegram为"选择性端到端加密",微信则没有采用端到端加密。之后美图公司即将进军区块链的消息频频传出。事实上,在2017年12月上旬,蔡文胜就在海南"互联网+"创新创业节上分享过对区块链技术的看法。区块链经济的核心不在技术,而在于商业逻辑的重构。因此,这不仅仅是一场技术革命,更是一场认知革命。大发888的区块链技术被称为是"以太坊和瑞波币的结合"。底层系统按照分层架构设计,将信任栈分为5层,实现了信任的分层传导;基于分层跨链技术,简化了智能合约的使用流程,便利了实际操作;dafabet并在此架构的基础上提供了分级账本的功能,是目前国际上唯一实现分层架构的底层技术。Dafa888未来将会构建出多样化生态的价值互联网,影响我们每个人的生活。
论文主要提出了一种针对共识机制PoS的多重签名算法Pixel。
所有基于PoS的区块链以及允许的区块链均具有通用结构,其中节点运行共识子协议,以就要添加到分类账的下一个区块达成共识。这样的共识协议通常要求节点检查阻止提议并通过对可接受提议进行数字签名来表达其同意。当一个节点从特定块上的其他节点看到足够多的签名时,会将其附加到其分类帐视图中。
由于共识协议通常涉及成千上万的节点,为了达成共识而共同努力,因此签名方案的效率至关重要。此外,为了使局外人能够有效地验证链的有效性,签名应紧凑以进行传输,并应快速进行验证。已发现多重签名对于此任务特别有用,因为它们使许多签名者可以在公共消息上创建紧凑而有效的可验证签名。
补充知识: 多重签名
是一种数字签名。在数字签名应用中,有时需要多个用户对同一个文件进行签名和认证。比如,一个公司发布的声明中涉及财务部、开发部、销售部、售后服务部等部门,需要得到这些部门签名认可,那么,就需要这些部门对这个声明文件进行签名。能够实现多个用户对同一文件进行签名的数字签名方案称作多重数字签名方案。
多重签名是数字签名的升级,它让区块链相关技术应用到各行各业成为可能。 在实际的操作过程中,一个多重签名地址可以关联n个私钥,在需要转账等操作时,只要其中的m个私钥签名就可以把资金转移了,其中m要小于等于n,也就是说m/n小于1,可以是2/3, 3/5等等,是要在建立这个多重签名地址的时候确定好的。
本文提出了Pixel签名方案,这是一种基于配对的前向安全多签名方案,可用于基于PoS的区块链,可大幅节省带宽和存储要求。为了支持总共T个时间段和一个大小为N的委员会,多重签名仅包含两个组元素,并且验证仅需要三对配对,一个乘幂和N -1个乘法。像素签名几乎与BLS多重签名一样有效,而且还满足前向安全性。此外,就像在BLS多签名中一样,任何人都可以非交互地将单个签名聚合到一个多签名中。
有益效果:
为了验证Pixel的设计,将Pixel的Rust实施的性能与以前的基于树的前向安全解决方案进行了比较。展示了如何将Pixel集成到任何PoS区块链中。接下来,在Algorand区块链上评估Pixel,表明它在存储,带宽和块验证时间方面产生了显着的节省。我们的实验结果表明,Pixel作为独立的原语并在区块链中使用是有效的。例如,与一组128位安全级别的N = 1500个基于树的前向安全签名(对于T = 232)相比,可以认证整个集合的单个Pixel签名要小2667倍,并且可以被验证快40倍。像素签名将1500次事务的Algorand块的大小减少了约35%,并将块验证时间减少了约38%。
对比传统BLS多重签名方案最大的区别是BLS并不具备前向安全性。
对比基于树的前向安全签名,基于树的前向安全签名可满足安全性,但是其构造的签名太大,验证速度有待提升。 本文设计减小了签名大小、降低了验证时间。
补充知识: 前向安全性
是密码学中通讯协议的安全属性,指的是长期使用的主密钥泄漏不会导致过去的会话密钥泄漏。前向安全能够保护过去进行的通讯不受密码或密钥在未来暴露的威胁。如果系统具有前向安全性,就可以保证在主密钥泄露时历史通讯的安全,即使系统遭到主动攻击也是如此。
构建基于分层身份的加密(HIBE)的前向安全签名,并增加了在同一消息上安全地聚合签名以及生成没有可信集的公共参数的能力。以实现:
1、生成与更新密钥
2、防止恶意密钥攻击的安全性
3、无效的信任设置
对于常见的后攻击有两种变体:
1、短程变体:对手试图在共识协议达成之前破坏委员会成员。解决:通过假设攻击延迟长于共识子协议的运行时间来应对短距离攻击。
2、远程变体:通过分叉选择规则解决。
前向安全签名为这两种攻击提供了一种干净的解决方案,而无需分叉选择规则或有关对手和客户的其他假设。(说明前向安全签名的优势)。
应用于许可的区块链共识协议(例如PBFT)也是许多许可链(例如Hyperledger)的核心,在这些区块链中,只有经过批准的方可以加入网络。我们的签名方案可以类似地应用于此设置, 以实现前向保密性,减少通信带宽并生成紧凑的块证书。
传统Bellare-Miner 模型,消息空间M的前向安全签名方案FS由以下算法组成:
1、Setup
pp ←Setup(T), pp为各方都同意的公共参数,Setup(T)表示在T时间段内对于固定参数的分布设置。
2、Key generation
(pk,sk1) ←Kg
签名者在输入的最大时间段T上运行密钥生成算法,以为第一时间段生成公共验证密钥pk和初始秘密签名密钥sk1。
3、Key update
skt+1←Upd(skt) 签名者使用密钥更新算法将时间段t的秘密密钥skt更新为下一个周期的skt + 1。该方案还可以为任何t0 t提供 “快速转发”更新算法 skt0←$ Upd0(skt,t0),该算法比重复应用Upd更有效。
4、Signing
σ ←Sign(skt,M),在输入当前签名密钥skt消息m∈M时,签名者使用此算法来计算签名σ。
5、Verification
b ← Vf(pk,t,M,σ)任何人都可以通过运行验证算法来验证消息M在公共密钥pk下的时间段t内的签名M的签名,该算法返回1表示签名有效,否则返回0。
1、依靠非对称双线性组来提高效率,我们的签名位于G2×G1中而不是G2 ^2中。这样,就足以给出公共参数到G1中(然后我们可以使用散列曲线实例化而无需信任设置),而不必生成“一致的”公共参数(hi,h0 i)=(gxi 1,gxi 2)∈G1× G2。
2、密钥生成算法,公钥pk更小,参数设置提升安全性。
除了第3节中的前向安全签名方案的算法外,密钥验证模型中的前向安全多重签名方案FMS还具有密钥生成,该密钥生成另外输出了公钥的证明π。
新增Key aggregation密钥汇总、Signature aggregation签名汇总、Aggregate verification汇总验证。满足前向安全的多重签名功能的前提下也证明了其正确性和安全性。
1、PoS在后继损坏中得到保护
后继损坏:后验证的节点对之前的共识验证状态进行攻击破坏。
在许多用户在同一条消息上传播许多签名(例如交易块)的情况下,可以将Pixel应用于所有这些区块链中,以防止遭受后继攻击并潜在地减少带宽,存储和计算成本。
2、Pixel整合
为了对区块B进行投票,子协议的每个成员使用具有当前区块编号的Pixel签署B。当我们看到N个委员会成员在同一块B上签名的集合时,就达成了共识,其中N是某个固定阈值。最后,我们将这N个签名聚合为单个多重签名Σ,而对(B,Σ)构成所谓的 区块证书 ,并将区块B附加到区块链上。
3、注册公共密钥
希望参与共识的每个用户都需要注册一个参与签名密钥。用户首先采样Pixel密钥对并生成相应的PoP。然后,用户发出特殊交易(在她的消费密钥下签名), 注册新的参与密钥 。交易包括PoP。选择在第r轮达成协议的PoS验证者,检查(a)特殊交易的有效性和(b)PoP的有效性。如果两项检查均通过,则 使用新的参与密钥更新用户的帐户 。从这一点来看,如果选中,则用户将使用Pixel登录块。
即不断更换自己的参与密钥,实现前向安全性。
4、传播和聚集签名
各个委员会的签名将通过网络传播,直到在同一块B上看到N个委员会成员的签名为止。请注意,Pixel支持非交互式和增量聚合:前者意味着签名可以在广播后由任何一方聚合,而无需与原始签名者,而后者意味着我们可以将新签名添加到多重签名中以获得新的多重签名。实际上,这意味着传播的节点可以对任意数量的委员会签名执行中间聚合并传播结果,直到形成块证书为止。或者,节点可以在将块写入磁盘之前聚合所有签名。也就是说,在收到足够的区块证明票后,节点可以将N个委员会成员的签名聚集到一个多重签名中,然后将区块和证书写入磁盘。
5、密钥更新
在区块链中使用Pixel时,时间对应于共识协议中的区块编号或子步骤。将时间与区块编号相关联时,意味着所有符合条件的委员会成员都应在每次形成新区块并更新轮回编号时更新其Pixel密钥。
在Algorand 项目上进行实验评估,与Algorand项目自带的防止后腐败攻击的解决方案BM-Ed25519以及BLS多签名解决方案做对比。
存储空间上:
节省带宽:
Algorand使用基于中继的传播模型,其中用户的节点连接到中继网络(具有更多资源的节点)。如果在传播过程中没有聚合,则中继和常规节点的带宽像素节省来自较小的签名大小。每个中继可以服务数十个或数百个节点,这取决于它提供的资源。
节省验证时间
马尔科·扬西蒂(Marco Iansiti) 卡里姆·拉哈尼(Karim Lakhani),《哈佛商业评论》中文版2017年1月,《区块链真相》一文
在技术创新领域的研究经验告诉我们,只有消除在技术、政府管控、组织和 社会 等多方面的障碍,才有可能真正发生区块链革命。若不清楚区块链将如何占领高地,贸然开始区块链创新就是个错误。
系统性风险。 说到系统性风险,就不得不提及像2008年到2009年的金融危机之后的信贷紧缩这样的全球经济戏剧性衰退。对于大部分公司来说,那是一个无法预测也无法控制的外部事件。全球监管者重塑了金融世界,以避免类似的危机,其战略中很重要的一步是增强了中央对手方(CCP)的角色。CCP是在一项金融交易中插入交易双方中间的一个实体。在双方都同意进行交易之后,CCP就成为对任意买方的卖方和任意卖方的买方。在此过程中,CCP通过结网降低交易对手信用和流动性的风险暴露,减少了当一方违约时交易双方的直接接触的风险,但这么做的风险仍然集中。CCP的主要角色是:1.管理结算运行任务,降低结算风险;2.通过会员身份批准和实行保证金(最初的和变化的)监控个人的信用风险,提供透明的风险管理;3.处理违约方;4.监督市场上的系统风险。
在以区块链为基础管理的金融市场中,许多CCP的原则可能会被淘汰。可以设想到的是,CCP的功能1和2将会被智能合约替代。DAOs的设计使交易双方发生关系,一旦植入在智能合约中的某些条款被触及,应收款项就能自动从一方转到另一方。CCP的功能3和4也可以被区块链技术提高,但它不太可能完全实现自动化,因为其对定向性程度和大型场景分析能力要求较高。相关区块链创业公司如Digital Asset Holding和D-Pactum正在与CCP展开合作,在不改变最近法律法规给予CCP的角色基础上,朝着分布式账本和智能合约的方向重新设计他们的技术。这可能会发展成为增加金融系统复原力的根本性措施。在分布式账本上,可以设计出透明、标准化的交易流程,资本和保证金的相互关系可以自动发生,因此降低了中间管理者的风险负担。通过把各个参与方签订智能合约编码,管理危机事件的规则可以做到尽可能的确定性。
网络风险。 这是我们要分析的最后一个外部风险,但并非最不重要。的确,对于网络风险或关键基础设施故障(如控制系统、能源、交通、电信和金融基础设施)相关风险的不理解或不重视,有可能对国家经济、多个经济部门和全球企业造成深远影响。进行风险评估和设置风险管理系统的责任现在落在了每个企业身上,但它们内部实践和流程千差万别,风险管理系统不成熟的小企业在这种情况下更易遭受网络攻击。
区块链是一种可行的解决方案吗?毫无疑问。数字货币的发展延伸了密码学的安全使用,并且创造了一种商业模式,针对网络攻击有了新型的复原力。在分布式账本上的一套完整系统可以提供比公司标准防火墙技术更高级别的网络安全。因为分布式账本是自动化的,并且由于信息共享的原则和共识协议的鲁棒性,账本 历史 是无所不在且无法更改的。因此在该系统中,高 科技 网络攻击可以在发生之前被阻止。
然而,在分析外部风险的最后,值得注意的是数字货币的出现第一次创造了一种与国家、跨国政府决策或是任何实体经济都不相关的流通货币。实际而言,数字货币价值的波动幅度巨大,但其方向和时间与市场不同,从而保持了与某国货币或股票市场非相关性。因此,比特币被称为“数字黄金”,和黄金一样,数字货币已被用作避险资产,限制宏观经济风险的影响。
总之,在深入挖掘区块链在风险管理方面的惊人效用之前,要明白区块链不是万能解药。它应该被看作是构建下一代风险管理基础设施的众多技术之一。
关于区块链网络安全技巧论文和区块链技术的安全问题的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。
评论