区块链技术教学设计及反思 区块链与教学

超果 泰达币价格行情 2022-12-26 132 0

本篇文章给大家谈谈区块链技术教学设计及反思,以及区块链与教学对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

深入了解区块链的共识机制及算法原理

所谓“共识机制”区块链技术教学设计及反思,是通过特殊节点区块链技术教学设计及反思的投票区块链技术教学设计及反思,在很短的时间内完成对交易的验证和确认;对一笔交易,如果利益不相干的若干个节点能够达成共识,我们就可以认为全网对此也能够达成共识。再通俗一点来讲,如果中国一名微博大V、美国一名虚拟币玩家、一名非洲留学生和一名欧洲旅行者互不相识,但他们都一致认为你是个好人,那么基本上就可以断定你这人还不坏。

要想整个区块链网络节点维持一份相同的数据,同时保证每个参与者的公平性,整个体系的所有参与者必须要有统一的协议,也就是我们这里要将的共识算法。比特币所有的节点都遵循统一的协议规范。协议规范(共识算法)由相关的共识规则组成,这些规则可以分为两个大的核心:工作量证明与最长链机制。所有规则(共识)的最终体现就是比特币的最长链。共识算法的目的就是保证比特币不停地在最长链条上运转,从而保证整个记账系统的一致性和可靠性。

区块链中的用户进行交易时不需要考虑对方的信用、不需要信任对方,也无需一个可信的中介机构或中央机构,只需要依据区块链协议即可实现交易。这种不需要可信第三方中介就可以顺利交易的前提是区块链的共识机制,即在互不了解、信任的市场环境中,参与交易的各节点出于对自身利益考虑,没有任何违规作弊的动机、行为,因此各节点会主动自觉遵守预先设定的规则,来判断每一笔交易的真实性和可靠性,并将检验通过的记录写入到区块链中。各节点的利益各不相同,逻辑上将它们没有合谋欺骗作弊的动机产生,而当网络中有的节点拥有公共信誉时,这一点尤为明显。区块链技术运用基于数学原理的共识算法,在节点之间建立“信任”网络,利用技术手段从而实现一种创新式的信用网络。

目前区款连行业内主流的共识算法机制包含:工作量证明机制、权益证明机制、股份授权证明机制和Pool验证池这四大类。

工作量证明机制即对于工作量的证明,是生成要加入到区块链中的一笔新的交易信息(即新区块)时必须满足的要求。在基于工作量证明机制构建的区块链网络中,节点通过计算随机哈希散列的数值解争夺记账权,求得正确的数值解以生成区块的能力是节点算力的具体表现。工作量证明机制具有完全去中心化的优点,在以工作量证明机制为共识的区块链中,节点可以自由进出。大家所熟知的比特币网络就应用工作量证明机制来生产新的货币。然而,由于工作量证明机制在比特币网络中的应用已经吸引了全球计算机大部分的算力,其他想尝试使用该机制的区块链应用很难获得同样规模的算力来维持自身的安全。同时,基于工作量证明机制的挖矿行为还造成了大量的资源浪费,达成共识所需要的周期也较长,因此该机制并不适合商业应用。

2012年,化名Sunny King的网友推出了Peercoin,该加密电子货币采用工作量证明机制发行新币,采用权益证明机制维护网络安全,这是权益证明机制在加密电子货币中的首次应用。与要求证明人执行一定量的计算工作不同,权益证明要求证明人提供一定数量加密货币的所有权即可。权益证明机制的运作方式是,当创造一个新区块时,矿工需要创建一个“币权”交易,交易会按照预先设定的比例把一些币发送给矿工本身。权益证明机制根据每个节点拥有代币的比例和时间,依据算法等比例地降低节点的挖矿难度,从而加快了寻找随机数的速度。这种共识机制可以缩短达成共识所需的时间,但本质上仍然需要网络中的节点进行挖矿运算。因此,PoS机制并没有从根本上解决PoW机制难以应用于商业领域的问题。

股份授权证明机制是一种新的保障网络安全的共识机制。它在尝试解决传统的PoW机制和PoS机制问题的同时,还能通过实施科技式的民主抵消中心化所带来的负面效应。

股份授权证明机制与董事会投票类似,该机制拥有一个内置的实时股权人投票系统,就像系统随时都在召开一个永不散场的股东大会,所有股东都在这里投票决定公司决策。基于DPoS机制建立的区块链的去中心化依赖于一定数量的代表,而非全体用户。在这样的区块链中,全体节点投票选举出一定数量的节点代表,由他们来代理全体节点确认区块、维持系统有序运行。同时,区块链中的全体节点具有随时罢免和任命代表的权力。如果必要,全体节点可以通过投票让现任节点代表失去代表资格,重新选举新的代表,实现实时的民主。

股份授权证明机制可以大大缩小参与验证和记账节点的数量,从而达到秒级的共识验证。然而,该共识机制仍然不能完美解决区块链在商业中的应用问题,因为该共识机制无法摆脱对于代币的依赖,而在很多商业应用中并不需要代币的存在。

Pool验证池基于传统的分布式一致性技术建立,并辅之以数据验证机制,是目前区块链中广泛使用的一种共识机制。

Pool验证池不需要依赖代币就可以工作,在成熟的分布式一致性算法(Pasox、Raft)基础之上,可以实现秒级共识验证,更适合有多方参与的多中心商业模式。不过,Pool验证池也存在一些不足,例如该共识机制能够实现的分布式程度不如PoW机制等

这里主要讲解区块链工作量证明机制的一些算法原理以及比特币网络是如何证明自己的工作量的,希望大家能够对共识算法有一个基本的认识。

工作量证明系统的主要特征是客户端要做一定难度的工作来得到一个结果,验证方则很容易通过结果来检查客户端是不是做了相应的工作。这种方案的一个核心特征是不对称性:工作对于请求方是适中中的,对于验证方是易于验证的。它与验证码不同,验证码是易于被人类解决而不是易于被计算机解决。

下图所示的为工作量证明流程。

举个例子,给个一个基本的字符创“hello,world区块链技术教学设计及反思!”,我们给出的工作量要求是,可以在这个字符创后面添加一个叫做nonce(随机数)的整数值,对变更后(添加nonce)的字符创进行SHA-256运算,如果得到的结果(一十六进制的形式表示)以“0000”开头的,则验证通过。为了达到这个工作量证明的目标,需要不停地递增nonce值,对得到的字符创进行SHA-256哈希运算。按照这个规则,需要经过4251次运算,才能找到前导为4个0的哈希散列。

通过这个示例我们对工作量证明机制有了一个初步的理解。有人或许认为如果工作量证明只是这样一个过程,那是不是只要记住nonce为4521使计算能通过验证就行了,当然不是了,这只是一个例子。

下面我们将输入简单的变更为”Hello,World!+整数值”,整数值取1~1000,也就是说将输入变成一个1~1000的数组:Hello,World!1;Hello,World!2;...;Hello,World!1000。然后对数组中的每一个输入依次进行上面的工作量证明—找到前导为4个0的哈希散列。

由于哈希值伪随机的特性,根据概率论的相关知识容易计算出,预计要进行2的16次方次数的尝试,才能得到前导为4个0的哈希散列。而统计一下刚刚进行的1000次计算的实际结果会发现,进行计算的平均次数为66958次,十分接近2的16次方(65536)。在这个例子中,数学期望的计算次数实际就是要求的“工作量”,重复进行多次的工作量证明会是一个符合统计学规律的概率事件。

统计输入的字符创与得到对应目标结果实际使用的计算次数如下:

对于比特币网络中的任何节点,如果想生成一个新的区块加入到区块链中,则必须解决出比特币网络出的这道谜题。这道题的关键要素是工作量证明函数、区块及难度值。工作量证明函数是这道题的计算方法,区块是这道题的输入数据,难度值决定了解这道题的所需要的计算量。

比特币网络中使用的工作量证明函数正是上文提及的SHA-256。区块其实就是在工作量证明环节产生的。旷工通过不停地构造区块数据,检验每次计算出的结果是否满足要求的工作量,从而判断该区块是不是符合网络难度。区块头即比特币工作量证明函数的输入数据。

难度值是矿工们挖掘的重要参考指标,它决定了旷工需要经过多少次哈希运算才能产生一个合法的区块。比特币网络大约每10分钟生成一个区块,如果在不同的全网算力条件下,新区块的产生基本都保持这个速度,难度值必须根据全网算力的变化进行调整。总的原则即为无论挖矿能力如何,使得网络始终保持10分钟产生一个新区块。

难度值的调整是在每个完整节点中独立自动发生的。每隔2016个区块,所有节点都会按照统一的格式自动调整难度值,这个公式是由最新产生的2016个区块的花费时长与期望时长(按每10分钟产生一个取款,则期望时长为20160分钟)比较得出来的,根据实际时长一期望时长的比值进行调整。也就是说,如果区块产生的速度比10分钟快,则增加难度值;反正,则降低难度值。用公式来表达如下:

新难度值=旧难度值*(20160分钟/过去2016个区块花费时长)。

工作量证明需要有一个目标值。比特币工作量证明的目标值(Target)的计算公式如下:

目标值=最大目标值/难度值,其中最大目标值为一个恒定值0x00000000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

目标值的大小与难度值成反比,比特币工作量证明的达成就是矿中计算出来的区块哈希值必须小于目标值。

我们也可以将比特币工作量的过程简单的理解成,通过不停变更区块头(即尝试不同nonce值)并将其作为输入,进行SHA-256哈希运算,找出一个有特定格式哈希值的过程(即要求有一定数量的前导0),而要求的前导0个数越多,难度越大。

可以把比特币将这道工作量证明谜题的步骤大致归纳如下:

该过程可以用下图表示:

比特币的工作量证明,就是我们俗称“挖矿”所做的主要工作。理解工作量证明机制,将为我们进一步理解比特币区块链的共识机制奠定基础。

《区块链原理、设计与应用》pdf下载在线阅读,求百度网盘云资源

《区块链原理、设计与应用》(杨保华)电子书网盘下载免费在线阅读

资源链接:

链接:

提取码:8u8b

书名:区块链原理、设计与应用

作者:杨保华

豆瓣评分:7.2

出版社:机械工业出版社

出版年份:2017-8-21

页数:366

内容简介:

本书由超级账本核心设计和开发者撰写区块链技术教学设计及反思,是区块链开发落地专业指南。由浅入深,系统化介绍超级账本Fabric设计精华、应用开发等。全书分为理论篇和实践篇两大部分区块链技术教学设计及反思;第1~3章介绍区块链技术的由来、核心思想及典型的应用场景;第4~5章重点介绍区块链技术中大量出现的分布式系统技术和密码学安全技术;第6~8章介绍区块链领域的三个典型开源项目:比特币、以太坊以及超级账本;第9~11章以超级账本 Fabric 项目为例,具体讲解了安装部署、配置管理,以及使用 Fabric CA 进行证书管理的实践经验;第12章重点剖析超级账本 Fabric 项目的核心架构设计;第13章介绍区块链应用开发的相关技巧和示例;第14章介绍区块链服务平台的设计与开发,并讲解应用超级账本 Cello 项目构建服务平台的相关知识。本书覆盖了区块链和分布式账本领域的最新技术,可帮助读者深入理解区块链核心原理和典型设计实现,以及高效地开发基于区块链平台的分布式应用。

作者简介:

杨保华

博士,毕业于清华大学。超级账本(Hyperledger)大中华区技术工作组主席,IBM 大中华区Blockchain技术社区首席顾问,资深研究员。曾主持多个大规模系统平台的架构设计和研发实施,是区块链、云计算、大数据等技术的早期研究者和实践者。他热爱开源技术,曾贡献于OpenStack、OpenDaylight 等开源项目,是超级账本Fabric项目的核心设计和开发者,Cello和Fabric-SDK-Py项目的发起人。个人主页为。

陈昌

毕业于清华大学。纸贵科技 CTO,曾任 IBM 高级研究员。技术方向包括云计算、区块链、机器学习等。他是区块链技术的早期研究和推动者,是超级账本(Hyperledger)项目的核心开发者。他有丰富的区块链应用实践经验,曾负责金融行业区块链解决方案的架构设计和实施,并主导开发了若干区块链服务平台。

什么是区块链技术?区块链到底是什么?什么叫区块链?

狭义来讲,区块链是一种按照时间顺序将数据区块以顺序相连的方式组合成的一种链式数据结构, 并以密码学方式保证的不可篡改和不可伪造的分布式账本。

广义来讲,区块链技术是利用块链式数据结构来验证与存储数据、利用分布式节点共识算法来生成和更新数据、利用密码学的方式保证数据传输和访问的安全、利用由自动化脚本代码组成的智能合约来编程和操作数据的一种全新的分布式基础架构与计算方式。

【基础架构】

一般说来,区块链系统由数据层、网络层、共识层、激励层、合约层和应用层组成。 其中,数据层封装了底层数据区块以及相关的数据加密和时间戳等基础数据和基本算法;网络层则包括分布式组网机制、数据传播机制和数据验证机制等;共识层主要封装网络节点的各类共识算法;激励层将经济因素集成到区块链技术体系中来,主要包括经济激励的发行机制和分配机制等;合约层主要封装各类脚本、算法和智能合约,是区块链可编程特性的基础;应用层则封装了区块链的各种应用场景和案例。该模型中,基于时间戳的链式区块结构、分布式节点的共识机制、基于共识算力的经济激励和灵活可编程的智能合约是区块链技术最具代表性的创新点 。

拓展资料:

【区块链核心技术】

区块链主要解决的交易的信任和安全问题,因此它针对这个问题提出了四个技术创新:

1.分布式账本,就是交易记账由分布在不同地方的多个节点共同完成,而且每一个节点都记录的是完整的账目,因此它们都可以参与监督交易合法性,同时也可以共同为其作证。

区块链的分布式存储的独特性主要体现在两个方面:一是区块链每个节点都按照块链式结构存储完整的数据,传统分布式存储一般是将数据按照一定的规则分成多份进行存储。二是区块链每个节点存储都是独立的、地位等同的,依靠共识机制保证存储的一致性,而传统分布式存储一般是通过中心节点往其他备份节点同步数据。

没有任何一个节点可以单独记录账本数据,从而避免了单一记账人被控制或者被贿赂而记假账的可能性。也由于记账节点足够多,理论上讲除非所有的节点被破坏,否则账目就不会丢失,从而保证了账目数据的安全性。

2.非对称加密和授权技术,存储在区块链上的交易信息是公开的,但是账户身份信息是高度加密的,只有在数据拥有者授权的情况下才能访问到,从而保证了数据的安全和个人的隐私。

3.共识机制,就是所有记账节点之间怎么达成共识,去认定一个记录的有效性,这既是认定的手段,也是防止篡改的手段。区块链提出了四种不同的共识机制,适用于不同的应用场景,在效率和安全性之间取得平衡。

区块链的共识机制具备“少数服从多数”以及“人人平等”的特点,其中“少数服从多数”并不完全指节点个数,也可以是计算能力、股权数或者其他的计算机可以比较的特征量。“人人平等”是当节点满足条件时,所有节点都有权优先提出共识结果、直接被其他节点认同后并最后有可能成为最终共识结果。

4.智能合约,智能合约是基于这些可信的不可篡改的数据,可以自动化的执行一些预先定义好的规则和条款。以保险为例,如果说每个人的信息(包括医疗信息和风险发生的信息)都是真实可信的,那就很容易的在一些标准化的保险产品中,去进行自动化的理赔。

在保险公司的日常业务中,虽然交易不像银行和证券行业那样频繁,但是对可信数据的依赖是有增无减。因此,笔者认为利用区块链技术,从数据管理的角度切入,能够有效地帮助保险公司提高风险管理能力。具体来讲主要分投保人风险管理和保险公司的风险监督。

参考资料:

区块链-百度百科

区块链项目管理师有些什么课程?

推动区块链行业发展,满足全社会区块链行业人才市场需求势在必行。为顺应时代发展“区块链项目管理咨询师”课程,

区块链

第一章区块链技术

一、什么是区块链

二、区块链的发展历史

三、区块链的技术原理

四、区块链的技术应用

第二章区块链投资

一、区块链思维认知

二、区块链的交易流程

三、区块链项目投资

四、股权投资与区块链投资

第三章区块链运营

一、项目技术与安全性分析

二、项目应用场景可落地分析

三、通证分配机制

四、项目社区建设

链乔教育在线旗下学硕创新区块链技术工作站是中国教育部学校规划建设发展中心开展的“智慧学习工场2020-学硕创新工作站 ”唯一获准的“区块链技术专业”试点工作站。专业站立足为学生提供多样化成长路径,推进专业学位研究生产学研结合培养模式改革,构建应用型、复合型人才培养体系。

【区块链课程】3.1—数字钱包的概念、特点

一、 钱包区块链技术教学设计及反思的概念

生活中区块链技术教学设计及反思的传统钱包相当于一个容器,可用来存放现金,但对于数字货币钱包而言,它不是用来储存数字货币的,而是用来储存和管理(包含私钥和公钥) 的管理容器,数字钱包里有地址(类似于你的银行卡账号)、私钥(类似于你银行卡的密码)。

私钥: 用户使用私钥进行签名交易,从而证明拥有该交易的输出权,其交易信息并不是存储在该钱包内,而是存储在区块链中。

公钥: 用来生成地址,储存交易,信息由私钥通过非对称加密算法生成。

钱包地址: 是一个以双字母开头(代表币种)的42位16进制哈希值字符串。ETH的地址是以 0x 开头的 42 位 16 进制哈希值字符串。例如: 0xcbcbce885ef1b2d4c65e623bb05d579c8e9d5720 如果将钱包比作银行卡, 那么钱包地址就是银行卡号。

三者之间的关系,简单说就是: 私钥生成公钥,公钥生成地址。 简而言之,地址就是你的账户,银行卡号,私钥就是你的账户密码。所以如果别人盗取了你的私钥,也就绝对拥有你账户的拥有权。

二、 钱包的特点

类比银行卡,私钥好比我们的银行卡密码+银行卡账号,而根据公钥生成的数字货币地址,就好比我们的银行卡账号,用作交易的转账地址。数字货币是保存在交易市场的,钱包这张银行卡保管着我们的地址和密码信息,让我们拥有地址上对应的数字货币的支配权。

三、钱包之于区块链的价值

加密数字货币是一种基于区块链技术的数字货币,数字货币钱包是专门用来管理这些资产的应用。钱包应用按照密码学原理创建1个或多个钱包地址,每个钱包地址都对应1个密钥对:私钥和公钥。

公钥是根据私钥进行一定的数学运算生成,与私钥一一对应。公钥主要是对外交易使用,每次交易都必须使用私钥对交易记录进行签名以证明对相关钱包地址里面的资产有控制权。

私钥是唯一能够证明对于数字资产有控制权的凭证,对于数字资产钱包来说,私钥是最重要的。私钥的生成和存储方式决定了资产安全与否。

所以钱包的目的就是用来保存私钥的。只要有私钥,就代表了你拥有了对应的token。

但目前数字货币市场上存在着数字管理不便、交易和兑换门槛高、区块链性能不足以及设计不合理、区块链开发成本高、连接现实难、缺乏应用场景等问题。说的简单点,就是基于不同公链开发的token都需要各自的钱包,于是我们的手机就被多种钱包的App占满。

四、数字钱包的几大关键词:

1、钱包名:

数字货币钱包的钱包名就是你创建钱包时的账号名或者昵称,每个钱包地址对应一个账号名,因为通常数字钱包都可以创建多个钱包地址,为了便于分辨和管理,给每个钱包地址设置一个名字还是很有必要的。

2、密码:

当你创建数字货币钱包账号的时候,需要设置一个密码,当你转账支付时需要使用这个密码确认;当你对钱包的私钥或者keystore进行备份导出时也需要密码确认;另外,如果你使用keystore导入钱包时也需要密码确认,而使用私钥导入时可以重置密码。

3、助记词:

当你创建钱包的时候,会要求你记录一串助记词,通常是由多个(12,15,18,21位)不规则的英文单词毫无规律的组成的,相当于你数字钱包的密码+支付密码。助记词在创建钱包的时候会提示你进行保存,请务必保存好,建议用笔记录在单独的笔记本上,并保管好你的笔记本。

4、keystore:

keystore是钱包存储私钥的一个文件(json),这个文件使用时要用到钱包的密码。选择导出或者导入keystore时,都需要输入密码,这个密码是你原来设置的本钱包密码, 这一点和用私钥或助记词导入钱包不一样,用私钥或助记词导入钱包,不需要知道原密码,可以直接重置密码。

如何学习区块链?

如果想学习比特币及区块链方面的知识区块链技术教学设计及反思,还是要系统性地学习。网上这方面讨论、资料都很多区块链技术教学设计及反思,但水平参差不齐。建议看一下区块链老师的线上课程。

线上区块链视频教程是由Steven老师进行直播教学。Steven老师区块链技术教学设计及反思,西交大学学士,北航软件学院工程硕士。从事IT行业15年,7年编程开发经验,8年计算机培训经验。分别从事过Asp、Asp.net、PHP、Java、Android、HTML5等开发和教学工作。曾出版发行《变身程序猿——Android应用开发》(电子工业出版社),《Steven陪你学Android》、《零基础学编程》、《解密区块链》系列视频。

想要学习区块链技术的同学通过三个月线上直播学习,毕业后能够掌握区块链基本概念、精通智能合约开发与架构设计、掌握代币开发与ICO发币、掌握全栈dapp开发。

其区块链技术课程大纲如下区块链技术教学设计及反思

1.1区块链基本理论 0.5周

1.1.1初识区块链

1.1.2认识区块链家族

1.1.3区块链与比特币常见问题及基本概念

1.1.4区块链应用场景

1.1.5比特币钱包BitcoinCore

1.1.6testnet环境实现比特币交易

1.2编程基础入门 3.5周

1.2.1计算机软硬件基础

1.2.2字符集及字符编码

1.2.3HTML+CSS(含HTML5+CSS3)

1.2.4ECMAScript + BOM + DOM

1.2.5jQuery

1.2.6node.js

1.2.7Ajax及Express

1.3Go编程语言 6周

1.3.1Go基本语法

1.3.2流程控制

1.3.3函数及数据

1.3.4错误处理

1.3.5Go面向对象编程

1.3.6Go并发编程

1.3.7Go网络编程

1.3.8Go安全编程

1.3.9Go进阶编程(goroutine、channel)

1.3.10数据库MySQL、LevelDB

1.4区块链1.0——比特币Bitcoin 1周

1.4.1比特币原理

1.4.2比特币系统架构

1.4.3密码算法(Go语言实现)

1.4.4共识算法(Go语言实现)

1.4.5比特币交易原理及交易脚本

1.4.6比特币RPC编程(node.js实现)

1.4.7比特币源码解析

1.5区块链2.0——以太坊Ethereum 3周

1.5.1以太坊工作原理及基础架构

1.5.2以太坊基本概念(账户、交易、Gas)

1.5.3以太坊钱包Mist及Metamask

1.5.4以太坊交易

1.5.5ERC20标准Token开发部署

1.5.6以太坊开发IDE——remix-ide

1.5.7智能合约与Solidity

1.5.8Solidity部署、备份及调用

1.5.9框架技术:truffle及web3

1.5.10DApp开发实战

1.5.11Geth

1.6EOS及星云链开发实战 3周

1.6.1EOS介绍及石墨烯生态系

1.6.2EOS主要特点及发展前景

1.6.3EOS开发智能合约

1.6.4cleos及RPC接口

1.6.5EOS应用开发实战

1.6.6星云链介绍

1.6.7星云链开发DApp实战

1.7区块链3.0——超级账本之Fabric 3周

1.7.1超级账本项目介绍

1.7.2Fabric部署和使用

1.7.3Fabric配置管理

1.7.4Fabric架构设计

1.7.5Fabric CA应用与配置

1.7.6应用开发实战

区块链市场已经开始向大众打开,迅速抓住学习机遇,掌握区块链技术,站在互联网时代风口,未来发展必定会势如破竹区块链技术教学设计及反思

写到这里,本文关于区块链技术教学设计及反思和区块链与教学的介绍到此为止了,如果能碰巧解决你现在面临的问题,如果你还想更加了解这方面的信息,记得收藏关注本站。

评论